کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1149914 957903 2008 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Point and block prediction in log-Gaussian random fields: The non-constant mean case
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Point and block prediction in log-Gaussian random fields: The non-constant mean case
چکیده انگلیسی

This work considers the problems of point and block prediction in log-Gaussian random fields for the case when the mean of the log-process is not constant and depends linearly on unknown parameters. First, we propose a new point predictor that is optimal within a certain family of predictors, which extend a result in De Oliveira [2006. On optimal point and block prediction in log-Gaussian random fields. Scand. J. Statist. 33, 523–540.] that holds in the case when the mean of the log-process is constant. Second, we show that the results in De Oliveira [2006. On optimal point and block prediction in log-Gaussian random fields. Scand. J. Statist. 33, 523–540.] regarding optimal block prediction cannot be extended to the case when the mean of the log-process is not constant. Specifically, we show that the two families of block predictors considered by De Oliveira lack an optimal predictor. Finally, we numerically compare the predictive efficiency of the proposed point and block predictors.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 138, Issue 7, 1 July 2008, Pages 2128–2142
نویسندگان
, ,