کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1150655 | 957971 | 2007 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Adaptation over parametric families of symmetric linear estimators
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات کاربردی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper treats an abstract parametric family of symmetric linear estimators for the mean vector of a standard linear model. The estimator in this family that has smallest estimated quadratic risk is shown to attain, asymptotically, the smallest risk achievable over all candidate estimators in the family. The asymptotic analysis is carried out under a strong Gauss-Markov form of the linear model in which the dimension of the regression space tends to infinity. Leading examples to which the results apply include: (a) penalized least squares fits constrained by multiple, weighted, quadratic penalties; and (b) running, symmetrically weighted, means. In both instances, the weights define a parameter vector whose natural domain is a continuum.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Statistical Planning and Inference - Volume 137, Issue 3, 1 March 2007, Pages 684-696
Journal: Journal of Statistical Planning and Inference - Volume 137, Issue 3, 1 March 2007, Pages 684-696
نویسندگان
Rudolf Beran,