کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1151854 1489875 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A generalization of the Petrov strong law of large numbers
ترجمه فارسی عنوان
تعمیم قانون قدرتمند پتروف از اعداد بزرگ
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
چکیده انگلیسی

In 1969 V.V. Petrov found a new sufficient condition for the applicability of the strong law of large numbers to sequences of independent random variables. He proved the following theorem: let {Xn}n=1∞ be a sequence of independent random variables with finite variances and let Sn=∑k=1nXk. If Var(Sn)=O(n2/ψ(n))Var(Sn)=O(n2/ψ(n)) for a positive non-decreasing function ψ(x)ψ(x) such that ∑1/(nψ(n))<∞∑1/(nψ(n))<∞ (Petrov’s condition), then the relation (Sn−ESn)/n→0(Sn−ESn)/n→0 a.s. holds.In 2008 V.V. Petrov showed that under some additional assumptions Petrov’s condition remains sufficient for the applicability of the strong law of large numbers to sequences of random variables without the independence condition.In the present work, we generalize Petrov’s results (for both dependent and independent random variables), using an arbitrary norming sequence in place of the classical normalization.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Statistics & Probability Letters - Volume 104, September 2015, Pages 102–108
نویسندگان
,