کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1152426 958285 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Lévy area for Gaussian processes: A double Wiener–Itô integral approach
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
پیش نمایش صفحه اول مقاله
Lévy area for Gaussian processes: A double Wiener–Itô integral approach
چکیده انگلیسی

Let {X1(t)}0≤t≤1{X1(t)}0≤t≤1 and {X2(t)}0≤t≤1{X2(t)}0≤t≤1 be two independent continuous centered Gaussian processes with covariance functions R1R1 and R2R2. We show that if the covariance functions are of finite pp-variation and qq-variation respectively and such that p−1+q−1>1p−1+q−1>1, then the Lévy area can be defined as a double Wiener–Itô integral with respect to an isonormal Gaussian process induced by X1X1 and X2X2. Moreover, some properties of the characteristic function of that generalised Lévy area are studied.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Statistics & Probability Letters - Volume 81, Issue 9, September 2011, Pages 1380–1391
نویسندگان
, ,