کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1152884 1489906 2010 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Semiparametric estimation of survival function when data are subject to dependent censoring and left truncation
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
پیش نمایش صفحه اول مقاله
Semiparametric estimation of survival function when data are subject to dependent censoring and left truncation
چکیده انگلیسی

Satten et al. (2001) proposed an estimator of the survival function (denoted by S(t)S(t)) of failure times that is in the class of survival function estimators proposed by Robins (1993). The estimator is appropriate when data are subject to dependent censoring. In this article, we consider the case when data are subject to dependent censoring and left truncation, where the distribution function of the truncation variables is parameterized as G(x;θ)G(x;θ), where θ∈Θ⊂Rqθ∈Θ⊂Rq, and θθ is a qq-dimensional vector. We propose two semiparametric estimators of S(t)S(t) by simultaneously estimating G(x;θ)G(x;θ) and S(t)S(t). One of the proposed estimators, denoted by Sˆw(t;θˆw), is represented as an inverse-probability-weighted average (Satten and Datta, 2001). The other estimator, denoted by Sˆ(t;θˆ), is an extension of the estimator proposed by Satten et al.. The asymptotic properties of both estimators are established. Simulation results show that when truncation is not severe the mean squared error of Sˆ(t;θˆ) is smaller than that of Sˆw(t;θˆw). However, when truncation is severe and censoring is light, the situation can be reverse.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Statistics & Probability Letters - Volume 80, Issues 3–4, 1–15 February 2010, Pages 161–168
نویسندگان
,