کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1153060 958316 2013 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sharp estimates on the tail behavior of a multistable distribution
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
پیش نمایش صفحه اول مقاله
Sharp estimates on the tail behavior of a multistable distribution
چکیده انگلیسی

Multistable stochastic integrals on RR, have been introduced quite recently in Falconer and Liu (2012); they are defined through their characteristic functions. Roughly speaking, in a neighborhood of an arbitrary point x∈Rx∈R, such an integral can be viewed as a usual stable stochastic integral, with a stability parameter α(x)α(x) depending on the location xx.Let YY be an arbitrary symmetric αα-stable random variable of scale parameter σ>0σ>0, an important classical result concerning the heavy-tailed behavior of its distribution (see e.g. Samorodnitsky and Taqqu, 1994), is that, there exists an explicit constant C(α)>0C(α)>0, only depending on α∈(0,2)α∈(0,2), such that limλ→+∞(C(α)σαλ−α)−1P(|Y|>λ)=1limλ→+∞(C(α)σαλ−α)−1P(|Y|>λ)=1. In this article, by using basic methods of Fourier analysis, we show that the latter result can be extended to the setting of random variables defined as multistable stochastic integrals.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Statistics & Probability Letters - Volume 83, Issue 3, March 2013, Pages 680–688
نویسندگان
,