کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1153298 958326 2012 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Statistical properties of a blind source separation estimator for stationary time series
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
پیش نمایش صفحه اول مقاله
Statistical properties of a blind source separation estimator for stationary time series
چکیده انگلیسی

In this paper, we assume that the observed pp time series are linear combinations of pp latent uncorrelated weakly stationary time series. The problem is then, using the observed pp-variate time series, to find an estimate for a mixing or unmixing matrix for the combinations. The estimated uncorrelated time series may then have nice interpretations and can be used in a further analysis. The popular AMUSE algorithm finds an estimate of an unmixing matrix using covariances and autocovariances of the observed time series. In this paper, we derive the limiting distribution of the AMUSE estimator under general conditions, and show how the results can be used for the comparison of estimates. The exact formula for the limiting covariance matrix of the AMUSE estimate is given for general MA(∞)(∞) processes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Statistics & Probability Letters - Volume 82, Issue 11, November 2012, Pages 1865–1873
نویسندگان
, , , ,