کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1153432 | 958333 | 2009 | 7 صفحه PDF | دانلود رایگان |

In this paper, we study the convolutions of heterogeneous exponential and geometric random variables in terms of the weakly majorization order (⪰w) of parameter vectors and the likelihood ratio order (≥lr≥lr). It is proved that ⪰w order between two parameter vectors implies ≥lr≥lr order between convolutions of two heterogeneous exponential (geometric) samples. For the two-dimensional case, it is found that there exist stronger equivalent characterizations. These results strengthen the corresponding ones of Boland et al. [Boland, P.J., El-Neweihi, E., Proschan, F., 1994. Schur properties of convolutions of exponential and geometric random variables. Journal of Multivariate Analysis 48, 157–167] by relaxing the conditions on parameter vectors from the majorization order (⪰m) to ⪰w order.
Journal: Statistics & Probability Letters - Volume 79, Issue 15, 1 August 2009, Pages 1717–1723