کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1153960 958361 2008 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sufficient dimension reduction and variable selection for regression mean function with two types of predictors
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
پیش نمایش صفحه اول مقاله
Sufficient dimension reduction and variable selection for regression mean function with two types of predictors
چکیده انگلیسی

In this article, for the regression mean function of YY on (X,W), where YY is a scalar, X is a p×1p×1 vector and WW is a categorical variable, we propose a method, partial sparse MAVE, to achieve sufficient dimension reduction and variable selection on X simultaneously. The method relaxes any particular distribution assumption on the model and on X. We also extend this method to multivariate response of Y, and GPLSIM [Carroll, R.J., Fan, J., Gijbels, I., Wand, M.P., 1997. Generalized partially linear single-index models. Journal of the American Statistical Association 92, 477–489]. Simulations and a real data analysis confirm the efficacy of our method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Statistics & Probability Letters - Volume 78, Issue 16, November 2008, Pages 2798–2803
نویسندگان
, ,