کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1154585 958393 2008 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stability of sequential Monte Carlo samplers via the Foster-Lyapunov condition
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
پیش نمایش صفحه اول مقاله
Stability of sequential Monte Carlo samplers via the Foster-Lyapunov condition
چکیده انگلیسی
Sequential Monte Carlo (SMC) samplers [Del Moral, P., Doucet, A., Jasra, A., 2006. Sequential Monte Carlo samplers. J. Roy. Statist. Soc. B 68, 411-436] are designed to simulate from a sequence of probability measures on a common measurable space (E,E). One way to measure the accuracy of the resulting Monte Carlo estimates is the asymptotic variance in the central limit theorem (CLT). We investigate the conditions, for algorithms used in practice, which are sufficient to ensure that the resulting expression is upper bounded, of which, the typical conditions (e.g. [Chopin, N., 2004. Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Ann. Statist. 32, 2385-2411]) are quite restrictive. We use the Foster-Lyapunov condition and contractions in the f-norm of the Markov kernels [Douc, R., Moulines, E., Rosenthal, J.S., 2004. Quantitative bounds on convergence of time-inhomogeneous Markov chains. Ann. Appl. Probab. 14, 1643-1665] to establish quantitative bounds on the asymptotic variance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Statistics & Probability Letters - Volume 78, Issue 17, 1 December 2008, Pages 3062-3069
نویسندگان
, ,