کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1155094 958444 2008 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Acceleration of the EM and ECM algorithms using the Aitken δ2 method for log-linear models with partially classified data
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
پیش نمایش صفحه اول مقاله
Acceleration of the EM and ECM algorithms using the Aitken δ2 method for log-linear models with partially classified data
چکیده انگلیسی

In this paper, we discuss the MLEs for log-linear models with partially classified data. We propose to apply the Aitken δ2δ2 method of Aitken [Aitken, A.C., 1926. On Bernoulli’s numerical solution of algebraic equations. Proc. R. Soc. Edinburgh 46, 289–305] to the EM and ECM algorithms to accelerate their convergence. The Aitken δ2δ2 accelerated algorithm shares desirable properties of the EM algorithm, such as numerical stability, computational simplicity and flexibility in interpreting the incompleteness of data. We show the convergence of the Aitken δ2δ2 accelerated algorithm and compare its speed of convergence with that of the EM algorithm, and we also illustrate their performance by means of a simulation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Statistics & Probability Letters - Volume 78, Issue 15, 15 October 2008, Pages 2332–2338
نویسندگان
, , ,