کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1155094 | 958444 | 2008 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Acceleration of the EM and ECM algorithms using the Aitken δ2 method for log-linear models with partially classified data
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we discuss the MLEs for log-linear models with partially classified data. We propose to apply the Aitken δ2δ2 method of Aitken [Aitken, A.C., 1926. On Bernoulli’s numerical solution of algebraic equations. Proc. R. Soc. Edinburgh 46, 289–305] to the EM and ECM algorithms to accelerate their convergence. The Aitken δ2δ2 accelerated algorithm shares desirable properties of the EM algorithm, such as numerical stability, computational simplicity and flexibility in interpreting the incompleteness of data. We show the convergence of the Aitken δ2δ2 accelerated algorithm and compare its speed of convergence with that of the EM algorithm, and we also illustrate their performance by means of a simulation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Statistics & Probability Letters - Volume 78, Issue 15, 15 October 2008, Pages 2332–2338
Journal: Statistics & Probability Letters - Volume 78, Issue 15, 15 October 2008, Pages 2332–2338
نویسندگان
Masahiro Kuroda, Michio Sakakihara, Zhi Geng,