کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1155152 958449 2008 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stein-type improvement under stochastic constraints: Use of multivariate Student-t model in regression
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
پیش نمایش صفحه اول مقاله
Stein-type improvement under stochastic constraints: Use of multivariate Student-t model in regression
چکیده انگلیسی

Recently, many researchers have considered the use of heavy-tailed models for processing multiplicative economic and business data for validity of robustness. As a reliable justification, fat-tailed models contain outliers and extreme values reasonably well. In this paper, we assume in the multiple regression model, that the error vector follows multivariate Student-t distribution as a viable alternative to the multivariate normal and obtain unrestricted and restricted estimators under the suspicion of stochastic constraints occurring. Also the preliminary test, Stein-type shrinkage and positive-rule shrinkage estimators are derived when the variable term in the restriction is assumed to follow multivariate Student-t distribution. The conditions of superiority of the proposed estimators are provided under weighted quadratic loss function.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Statistics & Probability Letters - Volume 78, Issue 14, 1 October 2008, Pages 2142–2153
نویسندگان
, ,