کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1155185 | 958452 | 2008 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An assumption for the development of bootstrap variants of the Akaike information criterion in mixed models
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
آمار و احتمال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This note provides a proof of a fundamental assumption in the verification of bootstrap AIC variants in mixed models. The assumption links the bootstrap data and the original sample data via the log-likelihood function, and is the key condition used in the validation of the criterion penalty terms. (See Assumption 3 of both Shibata [Shibata, R., 1997. Bootstrap estimate of Kullback-Leibler information for model selection. Statistica Sinica 7, 375-394] and Shang and Cavanaugh [Shang, J., Cavanaugh, J.E., 2008. Bootstrap variants of the Akaike information criterion for mixed model selection. Computational Statistics and Data Analysis 52, 2004-2021]. To state the assumption, let Y and Yâ represent the response vector and the corresponding bootstrap sample, respectively. Let θ represent the set of parameters for a candidate mixed model, and let Î¸Ë denote the corresponding maximum likelihood estimator based on maximizing the likelihood L(θâ£Y). With Eâ denoting the expectation with respect to the bootstrap distribution of Yâ, the assumption asserts that EâlogL(θËâ£Yâ)=logL(θËâ£Y). We prove that the assumption holds under parametric, semiparametric, and nonparametric bootstrapping.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Statistics & Probability Letters - Volume 78, Issue 12, 1 September 2008, Pages 1422-1429
Journal: Statistics & Probability Letters - Volume 78, Issue 12, 1 September 2008, Pages 1422-1429
نویسندگان
Junfeng Shang, Joseph E. Cavanaugh,