کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1155195 958452 2008 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Clustering gene expression profile data by selective shrinkage
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آمار و احتمال
پیش نمایش صفحه اول مقاله
Clustering gene expression profile data by selective shrinkage
چکیده انگلیسی

Clustering of gene expression profiles is a widely used approach for finding macroscopic data structure. A complication in such analyses is that not all genes are informative for forming clusters and different clusters might have different transcription regulation. Driven by these considerations, we present a novel two-stage clustering approach. The first stage identifies informative genes by adaptive variable selection using pseudo-samples modeled by a high dimensional multigroup ANOVA model. Variables are selected using a rescaled spike and slab Bayesian hierarchical model having a special selective shrinkage property. The second stage uses output from the first stage for clustering. We demonstrate why selective shrinkage occurs, and by extension, why it is useful for the clustering paradigm. We analyze a human gene atlas expression dataset where the question of interest is to look for tissue-specific transcription regulation and investigate whether tissues can be grouped together due to similar genomic control.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Statistics & Probability Letters - Volume 78, Issue 12, 1 September 2008, Pages 1490–1497
نویسندگان
, ,