کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1156116 | 958802 | 2009 | 30 صفحه PDF | دانلود رایگان |

General theorems for existence and uniqueness of viscosity solutions for Hamilton–Jacobi–Bellman quasi-variational inequalities (HJBQVI) with integral term are established. Such nonlinear partial integro-differential equations (PIDE) arise in the study of combined impulse and stochastic control for jump-diffusion processes. The HJBQVI consists of an HJB part (for stochastic control) combined with a nonlocal impulse intervention term.Existence results are proved via stochastic means, whereas our uniqueness (comparison) results adapt techniques from viscosity solution theory. This paper, to our knowledge is the first treating rigorously impulse control for jump-diffusion processes in a general viscosity solution framework; the jump part may have infinite activity. In the proofs, no prior continuity of the value function is assumed, quadratic costs are allowed, and elliptic and parabolic results are presented for solutions possibly unbounded at infinity.
Journal: Stochastic Processes and their Applications - Volume 119, Issue 10, October 2009, Pages 3719–3748