کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1160403 | 1490329 | 2015 | 11 صفحه PDF | دانلود رایگان |
This paper compares the axiomatic method of David Hilbert and his school with Rudolf Carnap's general axiomatics that was developed in the late 1920s, and that influenced his understanding of logic of science throughout the 1930s, when his logical pluralism developed. The distinct perspectives become visible most clearly in how Richard Baldus, along the lines of Hilbert, and Carnap and Friedrich Bachmann analyzed the axiom system of Hilbert's Foundations of Geometry—the paradigmatic example for the axiomatization of science. Whereas Hilbert's axiomatic method started from a local analysis of individual axiom systems in which the foundations of mathematics as a whole entered only when establishing the system's consistency, Carnap and his Vienna Circle colleague Hans Hahn instead advocated a global analysis of axiom systems in general. A primary goal was to evade, or formalize ex post, mathematicians' ‘material’ talk about axiom systems for such talk was held to be error-prone and susceptible to metaphysics.
Journal: Studies in History and Philosophy of Science Part A - Volume 53, October 2015, Pages 12–22