کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1175289 | 1491337 | 2016 | 10 صفحه PDF | دانلود رایگان |
Quantification of the specificity of RNA binding proteins and RNA processing enzymes is essential to understanding their fundamental roles in biological processes. High-throughput sequencing kinetics (HTS-Kin) uses high-throughput sequencing and internal competition kinetics to simultaneously monitor the processing rate constants of thousands of substrates by RNA processing enzymes. This technique has provided unprecedented insight into the substrate specificity of the tRNA processing endonuclease ribonuclease P. Here, we investigated the accuracy and robustness of measurements associated with each step of the HTS-Kin procedure. We examine the effect of substrate concentration on the observed rate constant, determine the optimal kinetic parameters, and provide guidelines for reducing error in amplification of the substrate population. Importantly, we found that high-throughput sequencing and experimental reproducibility contribute to error, and these are the main sources of imprecision in the quantified results when otherwise optimized guidelines are followed.
Journal: Analytical Biochemistry - Volume 510, 1 October 2016, Pages 1–10