کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1226806 968325 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Boron deprivation decreases liver S-adenosylmethionine and spermidine and increases plasma homocysteine and cysteine in rats
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله
Boron deprivation decreases liver S-adenosylmethionine and spermidine and increases plasma homocysteine and cysteine in rats
چکیده انگلیسی

Two experiments were conducted with weanling Sprague–Dawley rats to determine whether changes in S-adenosylmethionine utilization or metabolism contribute to the diverse responses to boron deprivation. In both experiments, four treatment groups of 15 male rats were fed ground corn-casein based diets that contained an average of 0.05 mg (experiment 1) or 0.15 mg (experiment 2) boron/kg. In experiment 2, some ground corn was replaced by sucrose and fructose to increase oxidative stress. The dietary variables were supplemental 0 (boron-deprived) or 3 (boron-adequate) mg boron/kg and different fat sources (can affect the response to boron) of 75 g corn oil/kg or 65 g fish (menhaden) oil/kg plus 10 linoleic acid/kg. When euthanized at age 20 (experiment 1) and 18 (experiment 2) weeks, rats fed the low-boron diet were considered boron-deprived because they had decreased boron concentrations in femur and kidney. Boron deprivation regardless of dietary oil increased plasma cysteine and homocysteine and decreased liver S-adenosylmethionine, S-adenosylhomocysteine, and spermidine. Plasma concentration of 8-iso-prostaglandin F2α (indicator of oxidative stress) was not affected by boron, but was decreased by feeding fish oil instead of corn oil. Fish oil instead of corn oil decreased S-adenosylmethionine, increased spermidine, and did not affect S-adenosylhomocysteine concentrations in liver. Additionally, fish oil versus corn oil did not affect plasma homocysteine in experiment 1, and slightly increased it in experiment 2. The findings suggest that boron is bioactive through affecting the formation or utilization of S-adenosylmethionine. Dietary fatty acid composition also affects S-adenosylmethionine formation or utilization, but apparently through a mechanism different from that of boron.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Trace Elements in Medicine and Biology - Volume 23, Issue 3, July 2009, Pages 204–213
نویسندگان
,