کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1263262 | 1496685 | 2013 | 10 صفحه PDF | دانلود رایگان |

Stoichiometric dissociation constants of the carbon dioxide system in NaCl solution between 0 and 1 mol and 0 to 25 °C were estimated by Monte Carlo (MC) simulations, and compared with Pitzer calculations and experimental measurements. The MC simulations used experimentally determined dielectric constants of water at different temperatures, and optimal agreement with the experimental data and Pitzer calculations was achieved by adjusting the ionic radii. This simple procedure resulted in effective ionic radii which were further used to simulate the activity coefficients of salt mixtures. The first and second stoichiometric dissociation constants of carbonic acid in NaCl solution (pK1⁎ and pK2⁎) were estimated from the MC-derived activity coefficients of mixed salts in NaCl. The MC results are in good agreement with the experimental data as well as with the Pitzer calculations. This study shows that Monte Carlo simulations in the temperature and ionic strength range relevant to seawater can provide pK values of the same quality as Pitzer calculations, and constitutes the first step in developing a temperature-dependent MC model for seawater. While MC calculations require greater computing resources, the number of parameters derived by fitting to thermodynamic data is substantially smaller than for Pitzer calculations.
Figure optionsDownload as PowerPoint slideHighlights
► CO2 system in NaCl is investigated over the temperature range 0–25 °C and 0–1 m.
► pK values calculated by Monte Carlo simulation and Pitzer model are of the same accuracy.
► A first step in developing a temperature-dependent Monte Carlo model for seawater.
Journal: Marine Chemistry - Volume 150, 20 March 2013, Pages 1–10