کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1265891 1496875 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Theoretical model of ice nucleation induced by acoustic cavitation. Part 1: Pressure and temperature profiles around a single bubble
ترجمه فارسی عنوان
مدل نظری مولکول یخ ناشی از کاویتیشن آکوستیک. قسمت 1: پروفیل فشار و درجه حرارت در اطراف حباب تک
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی (عمومی)
چکیده انگلیسی


• A mathematically simple but physically realistic cavitation model was developed.
• Pressure and temperature in the liquid around a collapsing bubble were calculated.
• Two thermal models were compared, the simplest classical one was proved non relevant.
• The bubble wall temperature was found much lower than the bubble core temperature.
• A moderate temperature but very high pressure zone near the bubble was evidenced.

This paper deals with the inertial cavitation of a single gas bubble in a liquid submitted to an ultrasonic wave. The aim was to calculate accurately the pressure and temperature at the bubble wall and in the liquid adjacent to the wall just before and just after the collapse. Two different approaches were proposed for modeling the heat transfer between the ambient liquid and the gas: the simplified approach (A) with liquid acting as perfect heat sink, the rigorous approach (B) with liquid acting as a normal heat conducting medium. The time profiles of the bubble radius, gas temperature, interface temperature and pressure corresponding to the above models were compared and important differences were observed excepted for the bubble size. The exact pressure and temperature distributions in the liquid corresponding to the second model (B) were also presented. These profiles are necessary for the prediction of any physical phenomena occurring around the cavitation bubble, with possible applications to sono-crystallization.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ultrasonics Sonochemistry - Volume 29, March 2016, Pages 447–454
نویسندگان
, , , , , ,