کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1271242 1496918 2013 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Voltage-controlled cellular viability of preosteoblasts on polarized cpTi with varying surface oxide thickness
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Voltage-controlled cellular viability of preosteoblasts on polarized cpTi with varying surface oxide thickness
چکیده انگلیسی


• Anodization of titanium reduces cell damage at cathodic voltages.
• There is a current threshold (0.1 μA/cm2) associated with loss of cell viability.
• Impedance of anodized Ti polarized at − 400 mV(Ag/AgCl) increases over 24 h.

Cathodic voltage shifts of metallic biomaterials were recently shown to induce cell apoptosis in-vitro. The details of the reduction-based physico-chemical phenomena have not yet been fully elucidated. This study shows how surface oxide thickness of commercially pure titanium affects the voltage viability range, and whether anodic oxidation can extend this range. Cell viability, cytoskeletal organization, and cellular adhesion on bare and anodized Ti, at − 500, − 400 mV(Ag/AgCl) and open circuit potential were assessed. Surfaces were characterized using contact angle measurement and atomic force microscopy, and the observed cellular response was related to the changes in electrochemical currents, and impedance of the samples. Results show that anodization at 9 V in phosphate buffer saline generates a compact surface oxide with comparable surface roughness and energy to the starting bare surface. The anodized surface extends the viability range at 24 h from − 400 mV(Ag/AgCl) by about − 100 mV, which corresponds to an increase in impedance of the surface from 58 kΩ cm2 to 29 MΩ cm2 at − 400 mV(Ag/AgCl) and results in low average current densities below 0.1 μA cm− 2. The results demonstrate that the voltage range for cell viability under cathodic polarization is expanded due to anodization of the surface oxide and lowering of cathodic currents.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bioelectrochemistry - Volume 94, December 2013, Pages 53–60
نویسندگان
, , , ,