کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1285128 973119 2010 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Further demonstration of the VRLA-type UltraBattery under medium-HEV duty and development of the flooded-type UltraBattery for micro-HEV applications
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Further demonstration of the VRLA-type UltraBattery under medium-HEV duty and development of the flooded-type UltraBattery for micro-HEV applications
چکیده انگلیسی

The UltraBattery has been invented by the CSIRO Energy Technology in Australia and has been developed and produced by the Furukawa Battery Co., Ltd., Japan. This battery is a hybrid energy storage device which combines a super capacitor and a lead-acid battery in single unit cells, taking the best from both technologies without the need of extra, expensive electronic controls. The capacitor enhances the power and lifespan of the lead-acid battery as it acts as a buffer during high-rate discharging and charging, thus enabling it to provide and absorb charge rapidly during vehicle acceleration and braking.The laboratory results of the prototype valve-regulated UltraBatteries show that the capacity, power, available energy, cold cranking and self-discharge of these batteries have met, or exceeded, all the respective performance targets set for both minimum and maximum power-assist HEVs. The cycling performance of the UltraBatteries under micro-, mild- and full-HEV duties is at least four times longer than that of the state-of-the-art lead-acid batteries. Importantly, the cycling performance of UltraBatteries is proven to be comparable or even better than that of the Ni-MH cells. On the other hand, the field trial of UltraBatteries in the Honda Insight HEV shows that the vehicle has surpassed 170,000 km and the batteries are still in a healthy condition. Furthermore, the UltraBatteries demonstrate very good acceptance of the charge from regenerative braking even at high state-of-charge, e.g., 70% during driving. Therefore, no equalization charge is required for the UltraBatteries during field trial. The HEV powered by UltraBatteries gives slightly higher fuel consumption (cf., 4.16 with 4.05 L/100 km) and CO2 emissions (cf., 98.8 with 96 g km−1) compared with that by Ni-MH cells. There are no differences in driving experience between the Honda Insight powered by UltraBatteries and by Ni-MH cells. Given such comparable performance, the UltraBattery pack costs considerably less – only 20–40% of that of the Ni-MH pack by one estimate. In parallel with the field trial, a similar 144-V valve-regulated UltraBattery pack was also evaluated under simulated medium-HEV duty in our laboratories.In this study, the laboratory performance of the 144-V valve-regulated UltraBattery pack under simulated medium-HEV duty and that of the recently developed flooded-type UltraBattery under micro-HEV duty will be discussed. The flooded-type UltraBattery is expected to be favorable to the micro-HEVs because of reduced cost compared with the equivalent valve-regulated counterpart.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Power Sources - Volume 195, Issue 4, 15 February 2010, Pages 1241–1245
نویسندگان
, , , ,