کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1286306 1497951 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Online identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction
ترجمه فارسی عنوان
شناسایی آنلاین پارامترهای باتری لیتیوم یون بر اساس یک مدل مدار معادل بهبود یافته و اجرای آن در پیش بینی وضعیت قدرت باتری
کلمات کلیدی
سیستم مدیریت باتری، مدل مدار معادل، شناسایی پارامتر، الگوریتم کمترین مربع تکرار پذیر، قدرت دولت
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
چکیده انگلیسی


• A novel equivalent-circuit model (ECM) is proposed.
• A two-level state-of-power (SOP) prediction algorithm is derived based on the proposed ECM.
• The experiment results verify the proposed ECM and SOP prediction algorithm.

In battery management system (BMS), equivalent-circuit model (ECM) is commonly used to simulate battery dynamics. However, there always is a contradiction between model simplicity and accuracy. A simple model is usually unable to reflect all the dynamic effects of the battery, which may bring errors to parameter identification. A complex model, however, always has too many parameters to be identified and may have parameter divergence problem. This paper tries to solve this problem with a novel ECM by adding a moving average (MA) noise to the one resistor-capacity (RC) circuit model. It can accurately capture the battery dynamics and retain a simple topology. A recursive extended least squares (RELS) algorithm is applied to online identify the ECM parameters, which shows a high accuracy in the experiments. In addition, a battery state-of-power (SOP) prediction algorithm is derived based on the proposed ECM. It considers both the voltage and current limitations of the battery, and offers a two-level prediction of the battery peak power capabilities.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Power Sources - Volume 281, 1 May 2015, Pages 192–203
نویسندگان
, , , , ,