کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1286897 | 973204 | 2007 | 9 صفحه PDF | دانلود رایگان |

Proton exchange membrane (PEM) fuel cells have been under development for many years and appear to be the potential solution for many electricity supply applications. Modelling and computer simulation of PEM fuel cells have been equally active areas of work as a means of developing better understanding of cell and stack operation, facilitating design improvements and supporting system simulation studies. The prediction of activation polarization in our previous PEM modelling work, as in most PEM models, concentrated on the cathode losses. Anode losses are commonly much smaller and tend to be ignored compared to cathode losses. Further development of the anode activation polarization term is being undertaken in order to broaden the application and usefulness of PEM models in general.Previously published work on the kinetics of the hydrogen oxidation reaction using Pt(h k l) electrodes in dilute H2SO4 has been examined and further developed for eventual application to the modelling of PEM fuel cells. New correlations for the exchange current density are developed for Pt(1 0 0), Pt(1 1 0) and Pt(1 1 1) electrodes. Predictive equations for the anode activation polarization are also proposed. In addition, terminology has been modified to make the correlation approach and, eventually, the modelling method more easily understood and used by those without an extensive background in electrochemistry.
Journal: Journal of Power Sources - Volume 163, Issue 2, 1 January 2007, Pages 679–687