کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1287146 1498039 2006 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Characterization and evaluation of Pt-Ru catalyst supported on multi-walled carbon nanotubes by electrochemical impedance
موضوعات مرتبط
مهندسی و علوم پایه شیمی الکتروشیمی
پیش نمایش صفحه اول مقاله
Characterization and evaluation of Pt-Ru catalyst supported on multi-walled carbon nanotubes by electrochemical impedance
چکیده انگلیسی

In this work the authors present the results of a systematic characterization and evaluation of the carbon nanotube supported Pt-Ru (Pt-Ru/CNT) for its use as methanol oxidation catalyst. Its activity was compared with that of Pt and Pt-Ru catalysts supported on Vulcan and synthesized from carbonyl precursors, and another commercial Pt-Ru catalyst. The cyclic voltammetry, CO stripping and electrochemical impedance techniques were employed to determine the electrocatalytic activity of the catalysts. The electrochemical studies were performed in 0.5 M H2SO4 containing different concentrations of methanol (0.05–1 M). The results showed a noticeable influence of the catalyst support (CNT) on the performance of the catalyst for CO oxidation. The electrochemical impedance studies allowed us to separate the different steps in the methanol oxidation reaction and to control these steps or reactions by varying the applied potential and the methanol concentration. At low methanol concentration and potentials the de-hydrogenation of methanol predominated. But, at high potential and methanol concentrations, the CO oxidation predominated. These results allowed us to clearly describe at what potential and concentration ranges the bi-functional effect of Ru becomes evident. Our results indicated that the CO oxidation occurs both on Pt and Ru. Compared to other catalysts, Pt-Ru supported on carbon nanotubes showed superior catalytic activity for CO and methanol oxidation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Power Sources - Volume 160, Issue 2, 6 October 2006, Pages 915–924
نویسندگان
, , , , ,