کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | ترجمه فارسی | نسخه تمام متن |
---|---|---|---|---|---|
1290921 | 973342 | 2007 | 8 صفحه PDF | سفارش دهید | دانلود رایگان |

New nanostructured carbons have been developed through pyrolysis of organic aerogels, based on supercritical drying of cellulose acetate gels. These cellulose acetate-based carbon aerogels (CA) are activated by CO2 at 800 °C and impregnated by PtCl62−; the platinum salt is then chemically or electrochemically reduced. The resulting platinized carbon aerogels (Pt/CA) are characterized with transmission electron microscopy (TEM) and electrochemistry. The active area of platinum is estimated from hydrogen adsorption/desorption or CO-stripping voltammetry: it is possible to deposit platinum nanoparticles onto the cellulose acetate-based carbon aerogel surface in significant proportions. The oxygen reduction reaction (ORR) kinetic parameters of the Pt/CA materials, determined from quasi-steady-state voltammetry, are comparable with that of Pt/Vulcan XC72R. These cellulose acetate-based carbon aerogels are thus promising electrocatalyst support for PEM application.
Journal: Journal of Power Sources - Volume 166, Issue 1, 30 March 2007, Pages 104–111