کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1297493 | 1498403 | 2006 | 6 صفحه PDF | دانلود رایگان |

The oxide-ion conduction properties of the series La2Mo2−yWyO9 (y ≤ 1.4) are studied by impedance spectroscopy. For each studied composition (y = 0.25, 0.5, 0.75, 1.0, 1.2 and 1.4) two conduction regimes are evidenced: a low temperature regime of conventional Arrhenius-type, and a high temperature regime interpreted as VTF (Vogel–Tammann–Fulcher)-type, with highly mobile oxide-ions. While the characteristics of the Arrhenius-type regime evolve regularly with tungsten substitution, those of the VTF-type regime vary non linearly, with an extremum at y = 1. Both findings are analyzed in connection with similar trends previously evidenced in a crystallographic study [G. Corbel, Y Laligant, F. Goutenoire, E. Suard, P. Lacorre, Chem. Mater. 17 (2005) 4678], namely smooth evolution of O2/O3 sites occupancy, and non linear evolution of the cell volume and cationic framework characteristics, respectively. The best performance in term of conduction stability in a reducing atmosphere is obtained for doubly substituted La1.7Gd0.3Mo0.8W1.2O9 (stable at 696 °C down to P(O2) = 1.6 10− 16 Pa).
Journal: Solid State Ionics - Volume 177, Issues 19–25, 15 October 2006, Pages 1715–1720