کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1338482 979668 2007 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Synthesis, characterization and catalytic activity of halo-methyl-bis(salicylaldehyde)ethylenediamine cobalt(II) complexes
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی معدنی
پیش نمایش صفحه اول مقاله
Synthesis, characterization and catalytic activity of halo-methyl-bis(salicylaldehyde)ethylenediamine cobalt(II) complexes
چکیده انگلیسی

The synthesis, characterization and catalytic activity of a series of tetra-halo-dimethyl salen and di-halo-tetramethyl-salen ligands are reported in this paper: α,α′-dimethyl-Salen (dMeSalen) (L1); 3,3′,5,5′-tetrachloro-α,α′-dimethyl-Salen, (tCldMeSalen) (L2); 3,3′-dibromo-5,5′-dichloro-α,α′-dimethyl-Salen, (dCldBrdMeSalen) (L3); 3,3′,5,5′-tetrabromo-α,α′-dimethyl-Salen, (tBrdMeSalen) (L4); 3,3′,5,5′-tetraiodo-α,α′-dimethyl-salen, (tIdMeSalen) (L5); 3,3′-dichloro-5,5′,α,α′-tetramethyl-Salen (dCltMeSalen) (L6); 3,3′-dibromo-5,5′,α,α′-tetramethyl-Salen (dBrtMeSalen) (L7); and 3,3′-diiodo-5,5′,α,α′-tetramethyl-Salen (dItMeSalen) (L8) (Salen = bis(salicylaldehyde)ethylenediamine). Upon reaction with Co(II) ions, these ligands form complexes with square planar geometry that have been characterized by elemental analysis, cyclic voltammetry, UV–Vis, IR and EPR spectroscopies. In the presence of pyridine the obtained Co(II) complexes were found able to bind reversibly O2, which was shown by EPR spectroscopy and cyclic voltammetry. They were also found able to catalyze the oxidation of 2,6-di-tert-butylphenol (DtBuP) (9) with formation of 2,6-di-tert-butyl-1,4-benzoquinone (DtBuQ) (10) and 2,6,2′,6′-tetra-tert-butyl-1,1′-diphenobenzoquinone (TtBuDQ) (11). These properties are first influenced by the coordination of pyridine in axial position of the Co(II) ion that causes an increase of the electronic density on the cobalt ion and as a consequence a decrease in the E1/2 value and an increase of the reducing power of the Co(II) complex. It is noteworthy that, under those conditions the complexes also show a remarkable quasi-reversible behaviour. Second, complex properties are also influenced by the substituents (methyl and halogen) grafted on the aromatic ring and on the azomethynic groups. The donating methyl substituent on the azomethynic groups causes a decrease in the E1/2 value, whereas the halogen substituents on the aromatic rings have two effects: a mesomeric donating effect that tends to lower the redox potential of the complex, and a steric effect that tends to decrease the conjugation of the ligand and then to increase the redox potential of the Co(II) complex. In pyridine, the steric effect predominates, which causes both an increase of the redox potential and a decrease of the selectivity of the oxidation of phenol 9. As a result of all these effects, it then appears that the best catalysts to realize the selective oxidation of 2,6-di-tert-butyl-phenol (9) by O2 are the Co complexes of ligands bearing CH3 donating substituents, Co(dMeSalen) 1 (2CH3 substituents), and Co-di-halo-tetra-methyl-salen complexes 6, 7 and 8 (4CH3 substituents), in the presence of pyridine.

Some halo-methyl-salen derivatives and their cobalt(II) complexes were prepared. Their properties were investigated by UV–VIS, IR, ESMS spectroscopy and cyclic voltammetry. A good correlation between their redox behavior and catalytic activity was found.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Polyhedron - Volume 26, Issue 13, 6 August 2007, Pages 3143–3152
نویسندگان
, ,