کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
13428829 | 1842298 | 2020 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Mitigating long tail effect in recommendations using few shot learning technique
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we propose a novel framework to mitigate the long tail effect and overcome the limited ratings problem using few shot learning techniques. Siamese network, a type of few shot learning technique is found to be performing well in many domains with a limited number of instances in the recent past. In the proposed framework, vital statistics of each user are computed and this information is provided to deep siamese network. The trained siamese network is used to identify the long tail items that are similar to the liked items of each user. Finally, the identified long tail items are recommended to the appropriate users. We introduce three novel performance metrics to evaluate the long tail item recommendations. The proposed framework is evaluated on two real world datasets (MovieLens 1M and Netflix) and the results demonstrate that the proposed framework outperforms the traditional approaches and existing long-tail recommendation techniques.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 140, February 2020, 112887
Journal: Expert Systems with Applications - Volume 140, February 2020, 112887
نویسندگان
Rama Syamala Sreepada, Bidyut Kr. Patra,