کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1361934 | 981475 | 2011 | 4 صفحه PDF | دانلود رایگان |

The action of β-secretase is strongly tied to the onset of Alzheimer’s disease. The development of inhibitors of β-secretase is thus critical to combating this disease, which threatens an ever increasing number of the population and grows in importance as the population ages. Herein we show that flavones from Morus lhou potently inhibit β-secretase. Our aim in this manuscript is to explore the inhibitory kinetics of natural compounds and develop a phamacophore model which details the critical features responsible for inhibitory activity. The IC50 values of compounds for β-secretase inhibition were determined to range between 3.4 and 146.1 μM. Prenylated flavone 2 (IC50 = 3.4 μM) was 20 times more effective than its parent compound, noratocarpetin 1 (IC50 = 60.6 μM). The stronger activity was related with resorcinol moiety on B-ring and isoprenyl functionality at C-3. Kinetic analysis shows that the four effective compounds (1–4) have a noncompetitive mode of action. The binding affinity of flavones for β-secretase calculated using in silico docking experiments correlated well with their IC50 values and noncompetitive inhibition modes.
A series of prenylated flavones (1–8) were isolated and evaluated for their BACE-1 inhibitory activities. The inhibition and structural reliability of these analogs are described.Figure optionsDownload as PowerPoint slide
Journal: Bioorganic & Medicinal Chemistry Letters - Volume 21, Issue 10, 15 May 2011, Pages 2945–2948