کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1373733 981905 2009 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Predictive models of Cannabinoid-1 receptor antagonists derived from diverse classes
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آلی
پیش نمایش صفحه اول مقاله
Predictive models of Cannabinoid-1 receptor antagonists derived from diverse classes
چکیده انگلیسی
Chemical database design is an important consideration for screening processes in drug discovery. More specifically, classification of a diverse compound set deeply influences the validation and the predictive power of prediction model for the designing of novel compounds. In this work, we investigated the effect of the reasonable classification on the prediction model. We first collected the known Cannabinoid-1 receptor antagonists. Following this, we calculate the chemical descriptors in order to classify the collected compounds. Finally, we build two predictive models via the 3D-QSAR using different molecular alignment and the alignment independent Molecular Interaction Field models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bioorganic & Medicinal Chemistry Letters - Volume 19, Issue 11, 1 June 2009, Pages 2990-2996
نویسندگان
, , ,