کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1377419 | 981977 | 2007 | 7 صفحه PDF | دانلود رایگان |

Extensive SAR studies and optimization of ADME properties of benzimidazol-2-one derivatives led to the identification of BMS-433771 (3) as an orally active RSV fusion inhibitor. In order to extend the structure–activity relationships for this compound series, substitution of the benzimidazole ring was examined with a view to establishing additional productive interactions between the inhibitor and functionality present in the proposed binding pocket. Amongst the compounds synthesized, the 5-aminomethyl analogue 10aa demonstrated potent antiviral activity towards wild-type RSV and retained excellent inhibitory activity towards a virus that had been developed to express resistance to BMS-433771 (3), data consistent with an additional productive interaction between the inhibitor and the fusion protein target.
Extensive SAR studies and optimization of ADME properties of benzimidazol-2-one derivatives led to the identification of BMS-433771 (3) as an orally active RSV fusion inhibitor. In order to extend the structure–activity relationships for this compound series, substitution of the benzimidazole ring was examined with a view to establishing additional productive interactions between the inhibitor and functionality present in the proposed binding pocket. Amongst the compounds synthesized, the 5-aminomethyl analogue 10aa demonstrated potent antiviral activity towards wild-type RSV and retained excellent inhibitory activity towards a virus that had been developed to express resistance to BMS-433771 (3), data consistent with an additional productive interaction between the inhibitor and the fusion protein target.Figure optionsDownload as PowerPoint slide
Journal: Bioorganic & Medicinal Chemistry Letters - Volume 17, Issue 16, 15 August 2007, Pages 4592–4598