کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1428993 1509184 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Understanding anisotropy and architecture in ice-templated biopolymer scaffolds
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد بیومتریال
پیش نمایش صفحه اول مقاله
Understanding anisotropy and architecture in ice-templated biopolymer scaffolds
چکیده انگلیسی


• In ice-templated scaffolds, scaffold architecture is determined at nucleation
• Predicting architecture requires measurement of local thermal parameters
• Increased slurry height changed where nucleation occurred
• Anisotropy results when portions of the slurry are above the freezing temperature

Biopolymer scaffolds have great therapeutic potential within tissue engineering due to their large interconnected porosity and biocompatibility. Using an ice-templated technique, where collagen is concentrated into a porous network by ice nucleation and growth, scaffolds with anisotropic pore architecture can be created, mimicking natural tissues like cardiac muscle and bone. This paper describes a systematic set of experiments undertaken to understand the effect of local temperatures on architecture in ice-templated biopolymer scaffolds. The scaffolds within this study were at least 10 mm in all dimensions, making them applicable to critical sized defects for biomedical applications. It was found that monitoring the local freezing behavior within the slurry was critical to predicting scaffold structure. Aligned porosity was produced only in parts of the slurry volume which were above the equilibrium freezing temperature (0 °C) at the time when nucleation first occurs in the sample as a whole. Thus, to create anisotropic scaffolds, local slurry cooling rates must be sufficiently different to ensure that the equilibrium freezing temperature is not reached throughout the slurry at nucleation. This principal was valid over a range of collagen slurries, demonstrating that by monitoring the temperature within slurry during freezing, scaffold anisotropy with ice-templated scaffolds can be predicted.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Materials Science and Engineering: C - Volume 37, 1 April 2014, Pages 141–147
نویسندگان
, , , ,