کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1429055 | 987163 | 2013 | 12 صفحه PDF | دانلود رایگان |

In this study, a simple and versatile synthetic approach was developed to prepare bactericidal polyurethane coatings. For this purpose, introduction of both quaternary ammonium salts (QASs), with well-known antibacterial activity, and reactive hydroxyl groups on to the backbone of soybean oil was considered. Epoxidized soybean oil was reacted with diethylamine and the intermediate tertiary amine containing polyol was reacted with two different alkylating agents, methyl iodide and benzyl chloride, to produce MQAP and BQAP, respectively. These functional polyols were reacted with different diisocyanate monomers to prepare polyurethane coatings. Depending on the structure of monomers used for the preparation of polyurethane coatings, initial modulus, tensile strength and elongation at break of samples were in the ranges of 122–339 MPa, 4.6–12.4 MPa and 8.4–46%, respectively. Polyurethane coatings based on isophorone diisocyanate showed proper mechanical properties and adhesion strength (0.41 MPa) for coating application. Study of fibroblast cells interaction with prepared polyurethanes showed promising cells viability in the range of 78-108%. Meanwhile, MQAP based samples with higher concentration of QASs showed better adhesion strength, surface hydrophilicity and antibacterial activity (about 95% bacterial reduction). Therefore, these materials can find applications as bactericidal coating for biomedical devices and implants.
Figure optionsDownload as PowerPoint slideHighlights
► Utilization of soybean oil as cheap and available renewable resource raw material
► Functionalization of soybean oil with both hydroxyl and quaternary ammonium groups
► Preparation of polyurethane coating with excellent physical and mechanical properties
► Promising antibacterial activity of coatings for both gram + and gram − bacteria
► No cytotoxic effect of coatings for fibroblast cells
Journal: Materials Science and Engineering: C - Volume 33, Issue 1, 1 January 2013, Pages 153–164