کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1440521 1509368 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A comparative study on long and short carbon nanotubes-incorporated polypyrrole/poly(sodium 4-styrenesulfonate) nanocomposites as high-performance supercapacitor electrodes
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد بیومتریال
پیش نمایش صفحه اول مقاله
A comparative study on long and short carbon nanotubes-incorporated polypyrrole/poly(sodium 4-styrenesulfonate) nanocomposites as high-performance supercapacitor electrodes
چکیده انگلیسی


• The capacitive performance of PPy electrodes is boosted as the incorporation of CNT.
• The effect of long and short CNT on the capacitive performance of composites is compared.
• The long tangled CNT form an interconnected conductive network within PPy/PSS-lCNT films.
• PPy/PSS-lCNT composites show the relatively more superior capacitive behavior and cycle stability.

Polypyrrole/poly(sodium 4-styrenesulfonate)-carbon nanotubes (PPy/PSS-CNT) nanocomposites have been fabricated with an in situ electrochemically polymerized method. The long (10–30 μm) and short (0.5–2 μm) CNT are incorporated separately into the composites, and their effect on the capacitive performance of composites prepared is compared. Scanning electron microscope characterization reveals that long CNT-incorporated composites (PPy/PSS-lCNT) have the more porous microstructure and present a large amount of CNT within the composites, in which these long tangled CNT form an interconnected conductive nano-network. Furthermore, combining with the transmission electron microscopy characterization, both of the two types of composites show the core–shell nanostructure with PPy layer coated on CNT. The results by electrochemical tests including cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy (EIS) manifest the PPy/PSS-lCNT composite electrodes have the relatively more superior capacitive behavior and cycle stability than those of the short CNT-incorporated composites (PPy/PSS-sCNT) electrodes. Thereinto, the PPy/PSS-lCNT composite electrodes exhibit a high areal capacitance of 146.1 mF cm−2 at 10 mV s−1 CV scan, retaining 94.0% of the initial capacitance after 5000CV cycles. This comparative study suggests that the long CNT-incorporated PPy/PSS-lCNT nanocomposites are relatively more promising as the electrode materials for the high-performance supercapacitors.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Synthetic Metals - Volume 209, November 2015, Pages 405–411
نویسندگان
, , , , ,