کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1458656 | 989580 | 2016 | 7 صفحه PDF | دانلود رایگان |
Biphasic calcium phosphate (BCP) compositions consisting of β-tricalcium phosphate (β-TCP) and calcium pyrophosphate (CPP) are potential biodegradable ceramics for bone regeneration. The present work demonstrates the formation of such dense ceramics by first preparing the precursors of nano-sized, amorphous, and equiaxed calcium pyrophosphate particles, and then sintering the precursors at 900 °C to transform them into desired BCP. However, if the complex of calcium tripolyphosphate was used, only CPP could be generated. It was also observed that the incorporation of Mg2+ had several effects on the resulting products including: (1) promoting the generation of meso-porous precipitates; (2) favoring the formation of β-TCP instead of CPP; (3) reducing the grain size and increasing the density of the sintered ceramics, and (4) enhancing the negative electric charge of the BCP surface. Thus, the as-prepared BCP ceramics can serve as potential bone substitute materials in orthopedic applications.
Journal: Ceramics International - Volume 42, Issue 9, July 2016, Pages 11032–11038