کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1458771 989581 2016 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Effects of in situ synthesized mullite whiskers on compressive strength of mullite fiber brick
ترجمه فارسی عنوان
اثرات سحر و جادوهای مولتی سنتز شده بر روی مقاومت فشاری آلی فیبر مولییت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سرامیک و کامپوزیت
چکیده انگلیسی

The method of in situ synthesis of mullite whiskers by gas-phase deposition and reaction was applied to improve the compressive strength of the mullite fiber brick. During the preparation process, silica sol, Al(NO3)3 solution and NH4F solution were introduced into the fibrous brick in the form of ions or sol through vacuum impregnation and freeze drying, and the silica sol, Al(NO3)3 and NH4F served as the silica sources, aluminum source and catalyst, respectively. Effects of process parameters (concentration of impregnation solutions, holding time, sintering temperature) on compressive strength and elastic modulus of the fibrous brick during the in situ toughening process were analyzed. SEM and XRD analysis results demonstrated that the mullite whiskers were synthesized on the surface of mullite fibers based on the reaction of AlOF and SiF4. What is more, the whiskers on adjacent fibers intersected with each other and formed many unfixed lap-jointing points, resulting in the increase of compressive strength and elastic modulus. Although the density and thermal conductivity of the sample after the generation of mullite whiskers fabricated with the optimum process were 0.406 g/cm3 and 0.1262 W/(m K), respectively, which were slightly higher than that of the raw fibrous brick (0.375 g/cm3 density and 0.1069 W/(m K) thermal conductivity, respectively), the corresponding compressive strength and elastic modulus of the sample reinforced with the whiskers increased to 1.45 MPa and 42.03 MPa, respectively, which were much higher than that of the raw fibrous brick (0.39 MPa compressive strength and 6.5 MPa elastic modulus).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ceramics International - Volume 42, Issue 11, 15 August 2016, Pages 13161–13167
نویسندگان
, , , , , , ,