کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1458934 989587 2016 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Propylene oxide assisted sol–gel synthesis of zinc ferrite nanoparticles for solar fuel production
ترجمه فارسی عنوان
پروپیلن اکسید کمک سنتز ژل نانو ذرات فریت روی برای تولید سوخت خورشیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سرامیک و کامپوزیت
چکیده انگلیسی

This paper reports the synthesis of phase-pure Zn-ferrite nanoparticles with high specific surface area (SSA) via the propylene oxide (PO) assisted sol–gel method. For the synthesis of Zn-ferrite, metal precursors (ZnCl2 and FeCl2·4H2O) were first dissolved in ethanol, and then PO was added dropwise for the gel formation. The effects of a variety of synthesis parameters, such as the concentration of PO, the gel aging time, the calcination temperature, and the calcination dwell time, on the phase/chemical composition, SSA, porosity, crystallite size, and morphology of the Zn-ferrite were studied in detail. Different analytical techniques, such as powder X-ray diffraction (PXRD), BET surface area analyzer (BET), electron dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HR-TEM), were used for analyzing the Zn-ferrite samples. The acquired results indicate that the phase/chemical composition of the Zn-ferrite remains unchanged, irrespective of the variation in the experimental conditions. BET analysis further confirms that the SSA of Zn-ferrite increased due to the increase in the concentration of PO and decreased with the upsurge in the calcination temperature and dwell time. The crystallite size of Zn-ferrite was also observed to be higher when the calcination temperature and dwell time were increased. SEM and HR-TEM assessment verify the formation of Zn-ferrite nanoparticles via the sol–gel method employed during the study.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ceramics International - Volume 42, Issue 2, Part A, 1 February 2016, Pages 2431–2438
نویسندگان
, , , ,