کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1459034 989588 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Durable, self-cleaning and superhydrophobic bamboo timber surfaces based on TiO2 films combined with fluoroalkylsilane
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سرامیک و کامپوزیت
پیش نمایش صفحه اول مقاله
Durable, self-cleaning and superhydrophobic bamboo timber surfaces based on TiO2 films combined with fluoroalkylsilane
چکیده انگلیسی

Decorative materials, including bamboo timber, have been proposed to exploit their superhydrophobic and self-cleaning properties, but a comprehensive appraisal of their environmental adaptability is still deficient. In this paper, a robust and durable superhydrophobic surface was formed on bamboo timber substrate through a process combining chemical solution deposition and chemical modification. The superhydrophobic surface resulted from micro-nanoscale binary-structured TiO2 films and the assembly of low-surface-energy fluorinated components, which exhibited a water contact angle of 163±1° and a sliding angle of 3±1°. The surface maintained superhydrophobicity after mechanical abrasion against 1500 mesh SiC sandpaper for 800 mm at the applied pressure of 1.2 kPa, indicating good mechanical stability. Moreover, the superhydrophobic surface exhibited good chemical stability against both acidic and basic aqueous solutions (e.g., simulated acid rain). After exposure to atmosphere for more than 180 days, the obtained surface still maintained a contact angle of 155±2° and a sliding angle of 6±2°, revealing good long-term stability. In addition, the as-prepared superhydrophobic surface exhibited almost complete wet self-cleaning of dirt particles with water droplets. It is believed that the method presented in this study can provide a straightforward and effective route to fabricate a large-area, mechanically robust, anticorrosive and self-cleaning superhydrophobic surface on woody materials for a great number of potential applications.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ceramics International - Volume 42, Issue 8, June 2016, Pages 9621–9629
نویسندگان
, , , , , , ,