کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1459053 989588 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modeling the thermal radiation properties of thermal barrier coatings based on a random generation algorithm
ترجمه فارسی عنوان
مدل سازی خواص حرارتی تابش پوشش های حرارتی بر اساس یک الگوریتم تولید تصادفی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سرامیک و کامپوزیت
چکیده انگلیسی

Thermal barrier coatings (TBCs) are porous media in which many different pores and cracks are induced by different manufacturing procedures. Many studies have been conducted to investigate the impact of microstructures of TBCs on thermal conductivity; nevertheless, the influence of microstructures on the radiative properties of TBCs has not drawn significant attention. In addition, the working condition of thermal barrier coatings is at high temperatures at which the contribution of radiative heat transfer plays a very crucial role. Therefore, it is necessary to study the radiative properties of TBCs to characterize their insulation performance. In this work, the microstructures of air-plasma- sprayed (APS) 8 wt% yttria stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) are constructed by the quartet structure generation set (QSGS) algorithm. A finite-difference-time-domain (FDTD) method is carried out to simulate radiative heat transfer through TBCs. Three parameters—average pore size, directional growth probability DiDi (especially horizontal growth probability D13D13) and porosity—have been investigated to study the microstructural effect on the radiative properties of TBCs. The reflectance of freestanding 50-μm-thick thermal barrier coatings is studied using Lumerical FDTD Solutions in the wavelength range from 1 to 6 μm at normal incidence. The absorption and scattering coefficient as a function of wavelength are extracted using the four-flux model. The results will help us to characterize the radiative heat transfer process across the TBCs and provide us with a theoretical guide to design TBCs with a high thermal insulation property.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ceramics International - Volume 42, Issue 8, June 2016, Pages 9752–9761
نویسندگان
, , ,