کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1460169 | 989601 | 2015 | 5 صفحه PDF | دانلود رایگان |
The effect of oxidation on the microstructural and mechanical stability of ceramic layers in metal supported solid oxide fuel cells is reported. Half-cells that are produced with a reduced nickel based anode are oxidized for different times and temperatures in order to assess stability limits. Samples are analyzed in terms of the effective cell curvature and microstructure, where further insight is obtained via the observation of microstructures before and after oxidization. The interpretation is aided by a comparison to the behavior of structures without electrolyte layer. Electrolyte cracking and anode delamination are observed after oxidation, where the latter is absent in case of oxidation experiments without electrolyte layer, highlighting the failure relevance of strain induced by electrolyte deposition.
Journal: Ceramics International - Volume 41, Issue 4, May 2015, Pages 5852–5856