کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1461918 | 989625 | 2012 | 7 صفحه PDF | دانلود رایگان |

Thermal shock damage resistance in advanced refractories depends on the crack interactions with the microstructure. These energy dissipation mechanisms during crack propagation are not directly considered in the original classical thermal shock model of Hasselman. They are imbedded within the N and γ terms of his derivations. In this extension of Hasselman's work, an expression is presented, which estimates the final crack size (ℓf) as the fracture surface energy ratio between γNBT and γWOF. That expression directly considers the crack interaction mechanisms with the refractory microstructure as it includes the R-curve behavior effects. In addition, the equation presented allows a quantitative evaluation of the volumetric density of cracks in refractories.
Journal: Ceramics International - Volume 38, Issue 7, September 2012, Pages 5369–5375