کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1475832 | 991131 | 2010 | 15 صفحه PDF | دانلود رایگان |

3-D molecular dynamics (MD) analyses of SiC–Si3N4 nanocomposite deformation and SiCO nanocomposite deformation are performed at 300 K, 900 K, and 1500 K. In SiC–Si3N4 nanocomposites, distribution of second phase SiC particles, volume fraction of atoms in GBs, and GB thickness play an important role in temperature dependent mechanical behavior. The deformation mechanism is a trade-off between the stress concentration caused by SiC particles and Si3N4–Si3N4 GB sliding. The temperature increase tends to work in favor of GB sliding leading to softening of structures. However, microstructural strength increases with increase in temperature when GBs are absent. In the case of SiCO nanocomposites, findings indicate that temperature change dependent amorphization of nanodomains, the nanodomain wall placement, the nanodomain wall thickness, and nanodomain size are important factors that directly affect the extent of crystallinity and the strength against mechanical deformation.
Journal: Journal of the European Ceramic Society - Volume 30, Issue 11, August 2010, Pages 2223–2237