کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1477186 | 991174 | 2009 | 6 صفحه PDF | دانلود رایگان |

Porous SiC ceramics were fabricated by the carbothermal reduction of polysiloxane-derived SiOC containing polymer microbeads followed by sintering. The effect of the SiC powder:polysiloxane-derived SiC (SiC:PDSiC) ratio on the porosity and flexural strength of the porous SiC ceramics were investigated. The porosity generally increased with decreasing SiC:PDSiC ratio when sintered at the same temperature. It was possible to control the porosity of porous SiC ceramics within a range of 32–64% by adjusting the sintering temperature and SiC:PDSiC ratio while keeping the sacrificial template content to 50 vol%.The flexural strengths generally decreased with increasing porosity at the same SiC:PDSiC ratio. However, a SiC:PDSiC ratio of 9:1 and a sintering temperature of 1750 °C resulted in excellent strength of 57 MPa at 50% porosity. Judicious selection of the sintering temperature and SiC:PDSiC ratio is an efficient way of controlling the porosity and strength of porous SiC ceramics.
Journal: Journal of the European Ceramic Society - Volume 29, Issue 13, October 2009, Pages 2867–2872