کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1488784 | 992295 | 2013 | 4 صفحه PDF | دانلود رایگان |

• Adsorption of methylene blue (MB) on graphene oxide (GO).
• Characterization of graphene oxide–methylene blue nanocomposite (MB–GO).
• Examination of MB–GO efficiency in singlet oxygen generation (SOG).
• MB–GO performs higher SOG efficiency than pristine MB.
Due to unique electronic, mechanical, optical and structural properties, graphene has shown promising applications in many fields, including biomedicine. One of them is noninvasive anticancer therapy – photodynamic therapy (PDT), where singlet oxygen (SO), generated under the irradiation of light with appropriate wavelengths, kills cancer cells. In this study, authors report graphene oxide (GO) noncovalent functionalization with methylene blue (MB). MB molecules underwent adsorption on the surface of GO. Detailed characterization of the obtained material was carried out with UV–vis spectroscopy, Raman spectroscopy, FT-IR spectroscopy, and confocal laser scanning microscopy. Furthermore, its performance in singlet oxygen generation (SOG) under irradiation of laser with excitation wavelengths of 785 nm was investigated. Interestingly, GO functionalized with MB (MB–GO) showed enhanced efficiency in singlet oxygen generation compared to pristine MB. The efficiency in SOG was detected by photobleaching of 9,10-anthracenediyl-bis(methylene)dimalonic acid (ABMDMA). These results indicate the material is promising in PDT anticancer therapy and further in vitro and in vivo studies are required.
Figure optionsDownload as PowerPoint slide
Journal: Materials Research Bulletin - Volume 48, Issue 7, July 2013, Pages 2636–2639