کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1490073 992318 2012 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Liquid crystalline phase synthesis of nanoporous MnO2 thin film arrays as an electrode material for electrochemical capacitors
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سرامیک و کامپوزیت
پیش نمایش صفحه اول مقاله
Liquid crystalline phase synthesis of nanoporous MnO2 thin film arrays as an electrode material for electrochemical capacitors
چکیده انگلیسی

Three-dimensional (3D) MnO2 thin film arrays with nanoporous structure is electrodeposited on Ti foil from hexagonal lyotropic liquid crystalline phase. Low-angle X-ray diffraction (XRD), wide-angle XRD, field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) are employed to study the morphology and the structure of the as-synthesized MnO2 materials. Galvanostatic charge/discharge measurements show the nanoporous, 3D electrode material exhibits excellent capacitive performance between the potential range of −0.1 to 0.9 V, and a maximum specific capacitance as high as 462 F g−1 are achieved in 0.5 M Na2SO4 solution at a charge/discharge current density of 4 A g−1.

Three-dimensional (3D) MnO2 thin film arrays with nanoporous structure is electrodeposited on Ti foil from hexagonal lyotropic liquid crystalline phase. Low-angle X-ray diffraction (XRD), wide-angle XRD, field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) are employed to study the morphology and the structure of the as-synthesized MnO2 materials. Galvanostatic charge/discharge measurements show the nanoporous, 3D electrode material exhibits excellent capacitive performance between the potential range of −0.1 to 0.9 V, and a maximum specific capacitance as high as 462 F g−1 are achieved in 0.5 M Na2SO4 solution at a charge/discharge current density of 4 A g−1.Figure optionsDownload as PowerPoint slideHighlights
► 3D MnO2 thin film arrays with nanoporous structure is fabricated for the first time.
► A maximum specific capacitance as high as 462 F g−1 is obtained.
► The 3D and nanoporous superarchitecture facilitate electrolyte penetration.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Materials Research Bulletin - Volume 47, Issue 11, November 2012, Pages 3120–3123
نویسندگان
, , , , , , ,