کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1490160 | 992318 | 2012 | 5 صفحه PDF | دانلود رایگان |

The synthesis of nano-sulfur sol by dissolving sublimed sulfur in a green solvent-PEG-200 was studied. Homogeneous rod-like structure of sulfur with a typical diameter of about 80 nm and an average aspect ratio of 6–8 was obtained. The structure, morphology, size, and stability of the products were investigated by transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS) measurements. The spectral properties of the products were investigated by ultraviolet-visible (UV–vis) absorption and resonance Rayleigh scattering spectroscopy (RRS). The results showed that the spherical sulfur nanoparticles could self-assemble into nanorods in PEG-200. During the self-assembling process, the absorption band showed a red shift and the RRS intensity enhanced continuously. There was physical cross-linking between PEG and sulfur nanoparticles. PEG-200 induced the oriented attachment of sulfur nanoparticles by the terminal hydroxyl groups. This research provides a greener and more environment-friendly synthetic method for the production of sulfur nanorods.
Homogeneous rod-like structure of sulfur with a typical diameter of about 80 nm and an average aspect ratio of about 6–8 was obtained. The sulfur nanoparticles could self-assemble from spherical particles to nanorods in PEG-200. During the self-assembling process, the absorption band showed a red shift which was due to the production of nanorods.Figure optionsDownload as PowerPoint slideHighlights
► A novel, facile and greener method to synthesize sulfur nanorods by the solubilizing and templating effect of PEG-200 was reported.
► S0 nanoparticles could self assemble in PEG-200 and finally form monodisperse and homogeneous rod-like structure with an average diameter of about 80 nm, the length ca. 600 nm.
► The absorption band showed a red shift and the RRS intensity enhanced continuously during the self-assembling process.
► PEG-200 induced the oriented attachment of sulfur nanoparticles by the terminal hydroxyl groups.
Journal: Materials Research Bulletin - Volume 47, Issue 11, November 2012, Pages 3665–3669