کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1490381 | 992323 | 2012 | 9 صفحه PDF | دانلود رایگان |

In this work, a novel photoelectrochemical fuel cell consisting of a titanium dioxide nanotube array photosensitive anode and a platinum cathode was made for decomposing environmentally hazardous materials to produce electricity and clean fuel. Titanium dioxide nanotubes (TiO2 NTs) were prepared via electrochemical oxidation of pure Ti in an ammonium fluoride and glycerol-containing solution. Scanning electron microscopy was used to analyze the morphology of the nanotubes. The average diameter, wall thickness and length of the as-prepared TiO2 NTs were determined. The photosensitive anode made from the highly ordered TiO2 NTs has good photo-catalytic property, as proven by the decomposition tests on urea, ammonia, sodium sulfide and automobile engine coolant under ultraviolet (UV) radiation. To improve the efficiency of the fuel cell, doping the TiO2 NTs with a transition metal oxide, NiO, was performed and the photosensitivity of the doped anode was tested under visible light irradiation. It is found that the NiO-doped anode is sensitive to visible light. Also found is that polyaniline-doped photosensitive anode can harvest photon energy in the visible light spectrum range much more efficiently than the NiO-doped one. It is concluded that the nanostructured photoelectrochemical fuel cell can generate electricity and clean fuel by decomposing hazardous materials under sunlight.
Figure optionsDownload as PowerPoint slideHighlights
► A photoelectrochemical fuel cell has been made from TiO2 nanotubes.
► The fuel cell decomposes environmentally hazardous materials to produce electricity.
► Doping the anode with a transition metal oxide increases the visible light sensitivity.
► Loading the anode with a conducting polymer enhances the visible light absorption.
Journal: Materials Research Bulletin - Volume 47, Issue 9, September 2012, Pages 2380–2388