کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1504485 | 1510991 | 2014 | 8 صفحه PDF | دانلود رایگان |

• LiMn2O4 was prepared by one-step hydrothermal reaction.
• Particle size decreased with an increase in hydrothermal temperature.
• Appropriate particle size improved the electrochemical performance of LiMn2O4.
LiMn2O4 cathode materials with high discharge capacity and good cyclic stability were prepared by a simple one-step hydrothermal treatment of KMnO4, aniline and LiOH solutions at 120–180 °C for 24 h. The aniline/KMnO4 molar ratio (R) and hydrothermal temperature exhibited an obvious influence on the component and phase structures of the resulting product. The precursor KMnO4 was firstly reduced to birnessite when R was less than 0.2:1 at 120–150 °C. Pure-phased LiMn2O4 was formed when R was 0.2:1, and the LiMn2O4 was further reduced to Mn3O4 when R was kept in the range of 0.2–0.3 at 120–150 °C. Moreover, LiMn2O4 was fabricated when R was 0.15:1 at 180 °C. Octahedron-like LiMn2O4 about 300 nm was prepared at 120 °C, and particle size decreased with an increase in hydrothermal temperature. Especially, LiMn2O4 synthesized at 150 °C exhibited the best electrochemical performance with the highest initial discharge capacity of 127.4 mAh g−1 and cycling capacity of 106.1 mAh g−1 after 100 cycles. The high discharge capacity and cycling stability of the as-prepared LiMn2O4 cathode for rechargeable lithium batteries were ascribed to the appropriate particle size and larger cell volume.
Figure optionsDownload as PowerPoint slide
Journal: Solid State Sciences - Volume 31, May 2014, Pages 16–23