کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1505736 993771 2010 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Magnetoelectric perovskite (Bi0.5Pb0.5)(Fe0.5Zr0.5)O3: Preparation, structural and magnetic properties
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد سرامیک و کامپوزیت
پیش نمایش صفحه اول مقاله
Magnetoelectric perovskite (Bi0.5Pb0.5)(Fe0.5Zr0.5)O3: Preparation, structural and magnetic properties
چکیده انگلیسی

The perovskite (Bi0.5Pb0.5)(Fe0.5Zr0.5)O3 was synthesized by solid-state reaction in an attempt to find magnetoelectric materials, in which ferroelectricity and ferromagnetism coexist. This complex perovskite has been studied by X-ray and neutron powder diffraction in combination with magnetic measurements. The compound crystallizes in the orthorhombic space group Pbam with a ∼ √2ap, b ∼ 2√2ap and c ∼ 2ap (with ap ∼ 4.057 Å). The field and temperature dependence of the magnetization combined with neutron diffraction data showed antiferromagnetic behavior with the Neel temperature, TN ∼ 450 K. Rietveld refinements of neutron powder diffraction data collected at different temperatures, between 10 and 700 K, have been carried out in order to extract information about the thermal evolution of the nuclear and magnetic structures. A distorted orthorhombic perovskite structure was found within the whole temperature interval. The Bi/Pb and Fe/Zr ions were found to be partially ordered over the perovskite A-site and disordered over the B-site. The neutron diffraction patterns of the (Bi0.5Pb0.5)(Fe0.5Zr0.5)O3 sample showed evidence of a long-range magnetic ordering below TN with a propagation vector k = (0,0,0) and an antiferromagnetic arrangement of the magnetic moments of the Fe3+ cations in the B-site. This is consistent with an Ay-type magnetic structure. The factors governing the structural and magnetic properties of (1 − x)BiFeO3–xPbZrO3 solid solutions are discussed and compared with those of pure BiFeO3 and PbZrO3. A solid solution strategy for developing magnetoelectric properties in BiFeO3-based compounds is described, with the aim of realizing both a spontaneous polarization and magnetization at room temperature.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Solid State Sciences - Volume 12, Issue 1, January 2010, Pages 115–122
نویسندگان
, , , ,